Scalable and Cost Effective Barrier Layer Coating to Improve Stability and Performance of SOFC Cathode

Xingbo Liu

Mechanical & Aerospace Engineering Department West Virginia University

Scott Barnett

Materials Science & Engineering Department Northwestern University

June 14, 2017

SOFC Cathode Barrier Layers

- Chemical Compositions (GDC, SDC, etc.)
- Coating Methods (Screen Printing + Sintering)
- Functions
 - Avoid Zirconate Formation
 - Improve ORR
- Current Issues
 - Porosity
 - Thickness

Electrolyte/Barrier Layer Effect on ORR Kinetics

 Aim 1 - Develop a scalable and cost-effective electrophoretic deposition(EPD) coating process to form a dense barrier layer between a YSZ electrolyte and the cathode in a SOFC.

 Aim 2 - Characterize the Sr diffusion/distribution across barrier layer with the aim to determine optimum barrier layer thickness

EPD vs. Other Possible Coatings

Method	Screen	Dip	Spin Coating	Electroplating	Thermal
	Printing	Coating			Spray
Green-body	High	High	High	Low	Medium
Porosity	-	_	-		
Coating time	Seconds/	Seconds/	Seconds/	Minutes/hours	Seconds
(~5µm)	minutes	minutes	minutes		
Cost	Low	Low	Low	Low	Medium
Scalable	Yes	Yes	Difficult	Yes	Yes
Composition	Easy	Easy	Easy	Moderate	Easy
Control					
Thickness	Easy	Easy/	Easy/ moderate	Moderate	Difficult
Control (~5µm)		moderate			
Coat on non-flat	Difficult	Easy	Moderate	Easy/moderate	Easy
surface					
Sintering	Required	Required	Required	Usually not	Usually not
Method	Tape Casting	PLD	RF Sputtering¹	CVD/ALD	EPD ²
Green-body	High	Low	Low	Low	Low
Porosity					
Coating time	Seconds/	Hours	Hours	Hours	Several
(~5µm)	minutes				minutes
Cost	Low	High	High	High	Low
Scalable	Yes	No	Yes	Yes	Yes
Composition	Easy	Moderate	Moderate	Moderate	Easy
Control					
Thickness	Easy	Moderate	Moderate	Easy/ moderate	Easy
Control (~5µm)					
Coat on non-flat	Easy	Easy/	Easy/ moderate	Easy/ moderate	Easy
surface		moderate			/moderate
Sintering	Required	Usually	Usually not	Usually not	Required ³
		not			

Movement of Particles during EPD

Driving force:

The interaction of the surface charge with the electric field (accelerate particle)

Drag forces:

1 Viscous drag from the liquid 2 The force exerted by the electric field on the counter-ions in the double layer 3 When a particle moves, the distortion in the double layer caused by a displacement between the center of the negative and positive charge

Preparing Stable Suspension

- Suspension: 100ml ethanol+1.5g GDC+ 1g lodine
- Zeta-potential: 18 mV
- Substrates: Stainless steel
- Voltage: 50V
- Time: 2min
- Distance:1cm
- GDC Particles are positively charged (absorbed H+)

 $2CH_{3}CH_{2}OH+I_{2} \rightarrow 2CH_{3}CHOH+2HI \rightarrow 2CH_{3}CHOH+2H^{+}+2I^{-}$

Conductive Substrate

- In-situ synthesis of polypyrrole
- Easy and industrial viable

Schematic of polypyrrole synthesis process

NDA: 2-6-naphthalene-difulfonic acid disodium salt

APS: ammonium peroxydisulfate

Preliminary Results – 2015

Possible Solutions: In-situ forming a conducting Polymer Layer

Results in 2016 – Conductive Polymer

- Uniform layer of Ppy
- Thickness less than 1um
- Conductivity is about 9 S/cm

(a) Cross - section and (b) microstructure of polypyrrole coated on YSZ before sintering

Results in 2016 - Deposited GDC by EPD

Microstructure of deposited GDC before sintering

Cross-section and (b) surface morphology of GDC layer before sintering

Effect of Voltage

The hydrogen gas bubble will impair the density of GDC layer

Fig.4 Shematic of reaction near cathode

Two type of H⁺ : free H⁺; absorbed H⁺

H⁺ can pass through GDC deposit to cathode and reduced under DC electric field

Note: hydrogen gas pass through the GDC deposit and impair the density and adhesion between GDC and YSZ

Optimal Voltage

• Uniformness and thickness of deposit depends on applied voltage

The deposit for 10 mins as a function of applied voltage (a) 60V, (b) 80V, (c) 100V, (d) 120V, (e) 140V and (f) 160V

Optimal Voltage

 Good adhesion between GDC and YSZ after sintering when voltage is not larger than 100V

Cross-sectional morphology of the deposit for 10 mins as a function of applied voltage (a) 60V, (b) 80V, (c) 100V, (d) 120V, (e) 140V and (f) 160V

Rate-Determining Step

(a) current and (b) pH near the cathode as a function of time under constant voltage

- Constant current under constant voltage —— constant deposition rate
- H+ accumulation zone near cathode
- The reduction of H+ is the rate-determining step

Thickness of Deposit

• The thickness of deposit is proportional to time

Thickness as a function of time for a GDC/ethanol suspension, under constant-voltage conditions (100V) when using polypyrrole coated YSZ as the cathodic electrode

AC EPD of GDC

- A uniform layer of GDC can be formed by EPD
- AC-EPD can improve the density

Microstructure of pure GDC layer formed by (a, b) DC and (c) AC-EPDafter sintering at 1300°C; (d) schematic of symmetric AC signal

Effect of Sintering Aid

- Iron oxide can be used as sintering aid to improve the density of GDC
- Dense GDC layer can be obtained at 1300°C by DC-EPD
- AC-EPD can decrease the densification temperature to 1250°C

Fig.12 (a)cross-section and (b) surface morphology of GDC layer with 2mol% FeO_{1.5} after sintering at 1300°C

DC and AC 1250°C

Fig.13 cross-section of GDC layer with 2mol% FeO_{1.5} formed by (a)DC and (b) 100kHz AC EPD after sintering at 1250°C

LSCF fired at 1000°C

• No Sr diffusion to YSZ

Fig.17 EDAX analysis of LSCF/GDC/YSZ before after long-time stability test

Performance of Symmetric cell

• Compared with spin coating, the total Ohmic resistance of symmetric cell with GDC formed by EPD is smaller

EIS at 750°C and (b) temperature dependence of Ohmic resistance of symmetric cell with GDC layer with sintering aid formed by spin

Cross-section micrograph of symmetric cell formed by (a) spin coating and (b) EPD

Aim 1 - Summary

- 1 100V is the optimal voltage for the suspension. The rate-determining step is the reduction of H⁺.
- 2 A uniform layer of GDC can be formed by EPD with a constant deposition rate under 100V.
- 3 Dense GDC layer can be obtained at 1300°C by DC-EPD, densification temperature can be decreased to 1250°C by AC-EPD
- 4 Compared with spin coating, the total Ohmic resistance of symmetric cell with GDC formed by EPD is smaller.

§Co-fired GDC/YSZ bi-layer electrolytes —Cross-sectional SEM-EDS, TEM-EDS —Atom-probe tomography

§GDC barriers made by WVU -Cross-sectional SEM-EDS

Co-Fired GDC/YSZ Electrolyte Cells

§Reduced firing temperature yields fairly dense thin GDC layers with little GDC/YSZ interdiffusion

–GDC thicknesses varied from 1.5 to6.0 microns

§LSCF layer applied

-Fired at 1000, 1100, or 1200 °C

§Aim: explore interdiffusion effect over range of conditions

Effect of LSCF Firing Temperature

- $\$ 1.5 micron thick GDC
- § Sr segregation to YSZ/GDC interface detected for 1200, not 1000 or 1100 C
- § Little Sr at typical LSCF firing temperature of 1100 C
- § Apparent Sr in YSZ layer due to Sr/Y peak overlap

Effect of GDC Thickness

§Thicker GDC layer appears to prevent Sr diffusion even at 1200 C

2.5µm

1.5 micron thick

Effect of GDC Pores

§Defects in GDC layer allow Sr diffusion to GDC/YSZ interface §Example shown is a 3 micron thick GDC layer

Transmission Electron Microscopy

§ Above results show limited Sr at GDC/YSZ interface for 1.5 micron, 1200 C case § TEM with energy dispersive x-ray spectroscopy (EDS) used to explore at higher resolution

HAADF - Z

Bright field

TEM-EDS

§SrZrO₃ detected in selected areas

EDS Line Scan #1

No SrZrO3 detected at void-free location

EDS Line Scan – Conťd

Thick SrZrO₃ layer detected near GDC void

Barrier Layers by WVU EPD LSCF Fired at 1000 C: SEM-EDS

- Barrier layer shows limited porosity
- No evidence of Sr accumulation at GDC/YSZ interface
 - Apparent Sr in YSZ layer is an artifact of peak overlap (with Y)

LSCF Fired at 1100 C: SEM-EDS

- Clear evidence of Sr segregation to GDC/YSZ interface
- La, Fe, and Co also appear to be present

LSCF Fired at 1200 C

 More pronounced Sr segregation, along with La, Fe, and Co

§Reduced-temperature co-firing yields reasonably dense GDC barrier with minimal GDC/YSZ interdiffusion

- Even a 1.5 micron co-fired barrier provides good protection for 1100C firing
- –1200C causes considerable zirconate formation, unless a thicker GDC layer is used
- -Zirconate forms at defects/pores in the GDC layer
- **§WVU GDC layer shows greater porosity but is thicker**
 - –Effective as a barrier layer at 1000 C, but some zirconate formation at 1100 & 1200 C

- NETL-SOFC Team: Shailesh Vora, Heather Guedenfeld, Steve Markovich etc.
- Northwestern University: Scott Barnett
- WVU: Mr. Shanshan Hu, Meng Yao, Dr. Wenyuan Li

Electrochemical Systems Research Center Forum

Shailesh Vora, US DOE NETL

Minfang Han, Tsinghua University

Teruhisa Horita, Japan AIST

Stefan Megel, Fraunhofer-IKTS

James Swistock, Penn Cara Energy

SOFC Cathode Degradation

- Microstructural changes (loss effective TPB area)
 - Grain growth
 - Coarsening of the particles
 - Surface re-construction
- Strontium segregation related issues $2Sr'_{La} + V^{\bullet\bullet}_{OLSCF} + 2O^x_O \leftrightarrow 2SrO(s)$
- Chemical reaction with YSZ electrolyte. $La_2O_3(s) + 2ZrO_2(s) \rightarrow La_2Zr_2O_3(s)$ $SrO(s) + ZrO_2(s) \rightarrow SrZrO_3(s)$
- Poisoning of the cathode (e.g. by CO₂, chromium species etc.)

 $SrO(s) + H_2O(g) \rightarrow Sr(OH)_2(s) \quad SrO(s) + CO_2(g) \rightarrow SrCO_3(s)$ $2Cr_2O_3(s) + 3O_2(g) + 4H_2O(g) \rightarrow 4CrO_2(OH)_2(g)$

Atom Probe Tomography

§Sr:

- Present at ~ 0.2% in YSZ/GDC
- Higher concentration at boundary
- Depleted around boundary

§Co

• present only near boundary

§ Fe:

- Used as sintering aid at 0.2%
- Strongly segregated at boundary

3 8

